
Shadows
Terminology

Occluders: cast shadows
Receivers: have shadows on them
Point light sources: make hard shadows
Area light sources: make soft shadows
Umbra: the fully shadowed region
Penumbra: the partially shadowed region

Problem
Existing APIs do not completely solve the rendering equation – and do not include
shadows

Solutions
Projection shadows

Idea: just project the occluder onto a receiving plane
How

One can derive the needed projection matrix
Then apply the projection matrix to the occlude geometry

Caveats
How to put the result on the receiving plane without being inside it (depth
aliasing)?

Best solution: render receiving normally and first, then render the projected
occlude with z-buffering off, then render the rest of the scene normally

What happens when the projected shadow falls outside the bounds of the
receiver?

Solution: turn on the stencil buffer when rendering the receiver, use it when
rendering the occluder

Note that this results in part of the shadow “going missing”
What if the shadows aren’t opaque?

If the object is convex, no problem: render the occluder using transparency.
Use backface culling if two polygons are too many.
If not, then will have varying numbers of polygons at each pixel

Best solution: use the stencil buffer, allow only the first pixel of the
occluder to be rendered

Why render the shadow every time? Wasteful if shadow don’t move
Render the shadow into an offscreen texture that is rerendered only when
the shadow (light, occluder, receiver) changes

Make sure that the occluder is between the light and the receiver, else errors
result

Can use the receiver to clip/cull potential occluders
What about receivers that aren’t planes?

Shadow mapping (Williams 78)
Idea

Consider the scene from the view of the light source
What the light sees is not in shadow

How
Render the scene from the view of the light source
This creates depth values that can be located in 3D: the shadow map
When rendering the scene from the eye’s viewpoint
Transform depths into the shadow map space
If depths are greater than those in the shadow map, corresponding object is in
shadow
If in shadow, don’t include light from this source

Caveats
Have to render twice: once for light view, once for eye view

Can calculate depth only during light pass
Can reuse shadow map if light, occluder, receiver do not move (viewer can
move)

Precision depends on XY and Z resolution
Image aliasing

Problem
Resolution in light view is not resolution in eye view
E.g. when a receiver is normal to one view, and orthogonal to other

E.g. fragments in eye will not generally match exactly to fragments in
light view

Solutions
Can filter neighbors to get average (but this has its limits)

Depth aliasing
Problem

Can be hard to tell if an eye fragment is in front of a light fragment,
especially if the views are not similar

Solution
Can add a “bias” constant to solve (works mostly, but not always)

“Peter panning”
Can change algorithm to use object IDs

But then objects will never shadow themselves
Flicker between frames

Caused by changes in view sampling
Can regenerate shadow map each frame, and use consistent sampling
scheme

Advantages
Linear (2 passes)
Works for arbitrary receivers

Shadow volumes
Idea

If the objects are polygonal, then so are the sides of the shadows
We figure out what these sides are
Then figure out if a fragment is inside the resulting volume

How
For each light

For each edge in each polygon
Define resulting shadow quadrilateral by
Drawing ray from light to each vertex

For each ray from the eye (for each eye fragment)
Count the number of front facing sides it crosses f
Count the number of backfacing sides it crosses b
If f-b is positive, then fragment is in shadow

Details
For each light in each frame

Clear stencil buffer
Draw scene (without shadow volumes) using only ambient and emission,
with z-buffering on
Turn off frame and z-buffer updates (leave ztest on)
Draw front facing shadow polygons

Increment stencil for each fragment
Draw backfacing shadow polygons

Decrement stencil for each fragment
Draw scene (without shadow volumes) using only diffuse and specular

Apply diffuse and specular only if stencil value is zero
Caveats

Shadow pierces the front or back clipping planes
Disadvantages

Translucent objects
As receiver: we only story the state of one object per pixel
As occluder: we know only if we are in our out of shadow

Slow
Lots of fill processing in all the shadow polygons!

